EXCITE project: RefExt

Martin Körner, Behnam Ghavimi, Azam Hosseini
Philipp Mayr, Heinrich Hartmann, and Steffen Staab
EXCITE Objectives

EXtraction of CITation from PDF Document

Objectives:
• Developing a toolchain of citation extraction and matching software
• Tools and data will be made available to researchers

http://west.uni-koblenz.de/en/research/excite
Reference String Extraction

• High number of possible reference styles (e.g. https://www.zotero.org/styles/ contains more than 400 different styles – only for social science)
• Large variety of layouts for publications
Related Work

Current solutions that perform reference string extraction:

1. Identify the reference section
2. Segment the reference section into individual reference strings

Thereby, errors that are made during the first step directly impact the accuracy of the reference string extraction.
Related Work (Cont.)

• Step 1 - Identify the reference section:
 • ParsCit\cite{1} uses a set of regular expressions
 • Cermine\cite{2} uses a trained SVMs model
 • GROBID\cite{3} uses a CRF model

• Step 2 - Segment the reference section into individual reference strings
 • ParsCit applies regular expression
 • Cermine uses k-means learning algorithm
 • GROBID uses a CRF model

Sources:
1. https://github.com/knmnyn/ParsCit
2. https://github.com/CeON/CERMINE
Our Approach (RefExt)

- Every line in text is potentially part of a reference string
- Use of layout features and textual features per line for machine learning
- Training of supervised conditional random fields
- This CRF model tags every line with our BIO-annotation

Source code: https://github.com/exciteproject/refext
BIO-annotation

• Target variables to predict are for each line one of:
 – B-REF: Beginning of a reference (first line)
 – I-REF: Intermediate reference (second+ line)
 – O: Other (not part of a reference string)

<table>
<thead>
<tr>
<th>#</th>
<th>BIO</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>529</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>530</td>
<td>O</td>
<td>appear in the footnotes. This could present an interesting use case of our approach.</td>
</tr>
<tr>
<td>531</td>
<td>O</td>
<td>References</td>
</tr>
<tr>
<td>532</td>
<td>O</td>
<td>References</td>
</tr>
<tr>
<td>535</td>
<td>B-REF</td>
<td>Barber, Benjamin R., 1998: A Place for US.</td>
</tr>
</tbody>
</table>
Features

Textual features:

1. Line starts with a capitalized letter, ends with a period, a comma, contains a year, a page range, a quotations mark
2. counts the occurrences of numbers, words, periods, commas, and words that only consist of one capitalized letter

Layout features:

1. current line is indented when compared to the previous line
2. gap between the current and previous lines
3. line contains less characters than the previous one
4. the position of a given line in the whole document
Reference Extraction Evaluation

• 100 Random full-text Paper (https://github.com/exciteproject/ssoar-gold-standard)
 – From SSOAR(http://www.ssoar.info/) corpus
 – Text PDF
 – Contain Reference Section
 – German

• We manually annotated them. They contain 5,355 reference strings.
Evaluation

• Most existing tools focus on English publications
• Adapt these tools to German language publications.
• We retrain CERMINE and GROBID
• We Modified ParsCit (e.g. adding “Literatur” and “Anhang”.)
• We exclude other tools that we could adapt them such as PDFX and pdfextract
Evaluation (Cont.)

- Macro-metrics of BIO-annotated reference lines (10-fold cross-validation)

<table>
<thead>
<tr>
<th>Metric</th>
<th>CER-D</th>
<th>CER-T</th>
<th>Pars-D</th>
<th>Pars-M</th>
<th>GRO-D</th>
<th>GRO-T</th>
<th>RefExt-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-REF Precision</td>
<td>0.719</td>
<td>0.734</td>
<td>0.683</td>
<td>0.769</td>
<td>0.692</td>
<td>0.871</td>
<td>0.916</td>
</tr>
<tr>
<td>B-REF Recall</td>
<td>0.600</td>
<td>0.557</td>
<td>0.620</td>
<td>0.688</td>
<td>0.789</td>
<td>0.865</td>
<td>0.952</td>
</tr>
<tr>
<td>B-REF F1-Score</td>
<td>0.616</td>
<td>0.589</td>
<td>0.616</td>
<td>0.689</td>
<td>0.712</td>
<td>0.861</td>
<td>0.922</td>
</tr>
<tr>
<td>I-REF Precision</td>
<td>0.729</td>
<td>0.755</td>
<td>0.577</td>
<td>0.678</td>
<td>0.664</td>
<td>0.857</td>
<td>0.882</td>
</tr>
<tr>
<td>I-REF Recall</td>
<td>0.340</td>
<td>0.313</td>
<td>0.809</td>
<td>0.843</td>
<td>0.839</td>
<td>0.871</td>
<td>0.944</td>
</tr>
<tr>
<td>I-REF F1-Score</td>
<td>0.432</td>
<td>0.415</td>
<td>0.647</td>
<td>0.716</td>
<td>0.703</td>
<td>0.855</td>
<td>0.902</td>
</tr>
</tbody>
</table>

- CER:CERMINE, GRO:GROBID, and Pars:ParsCit
- D: Default , T: Trained , and M: Modified
- Pars-M (V. 101101), Pars-D (May 31, 2017)
- CERMINE (V. 1.13) and GROBID (V. 0.4.1.)
- RefExt (V. 0.1.0)
Evaluation (Cont.)

- Macro-metrics of reference string extraction using 10-fold cross-validation

<table>
<thead>
<tr>
<th>Metric</th>
<th>CER-D</th>
<th>CER-T</th>
<th>Pars-D</th>
<th>Pars-M</th>
<th>GRO-D</th>
<th>GRO-T</th>
<th>RefExt-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.296</td>
<td>0.303</td>
<td>0.558</td>
<td>0.617</td>
<td>0.627</td>
<td>0.847</td>
<td>0.879</td>
</tr>
<tr>
<td>Recall</td>
<td>0.233</td>
<td>0.220</td>
<td>0.552</td>
<td>0.595</td>
<td>0.718</td>
<td>0.839</td>
<td>0.906</td>
</tr>
<tr>
<td>F1-Score</td>
<td>0.245</td>
<td>0.235</td>
<td>0.542</td>
<td>0.590</td>
<td>0.650</td>
<td>0.837</td>
<td>0.885</td>
</tr>
</tbody>
</table>

- GROBID had a recall of zero in 7 publications
- RefExt had a recall of zero for 2 publications
- But recall of 1.0 and 0.662 in GROBID
Future Work about RefExt

• Evaluation on English papers
• It remains to be evaluated how the performance improves when extending the training data
• Improvements might also be possible by adding more domain-specific features
Paper about RefExt