

EXCITE project: RefExt

Martin Körner, Behnam Ghavimi, Azam Hosseini Philipp Mayr, Heinrich Hartmann, and Steffen Staab

Presenter: Behnam Ghavimi

LOC-DB 2017

EXCITE Objectives

EXtraction of **CIT**ation from PDF DocumEnts **Objectives:**

- Developing a toolchain of citation extraction and matching software
- Tools and data will be made available to researchers

http://west.uni-koblenz.de/en/research/excite

Reference String Extraction

- High number of possible reference styles (e.g. <u>https://www.zotero.org/styles/</u> contains more than 400 different styles only for social science)
- Large variety of layouts for publications

Related Work

Current solutions that perform reference string extraction:

- 1. Identify the reference section
- 2. Segment the reference section into individual reference strings

Thereby, errors that are made during the first step directly impact the accuracy of the reference string extraction.

Related Work (Cont.)

- Step1 Identify the reference section:
 - <u>ParsCit[1]</u> uses a set of <u>regular expressions</u>
 - <u>Cermine[2]</u> uses a trained <u>SVMs</u> model
 - <u>GROBID[3]</u> uses a CRF model
- Step 2 Segment the reference section into individual reference strings
 - ParsCit applies regular expression
 - <u>Cermine</u> uses k-means learning algorithm
 - <u>GROBID</u> uses a CRF model

- Sources: 1. <u>https://github.com/knmnyn/ParsCit</u>
 - 2. https://github.com/CeON/CERMINE
 - 3. https://github.com/kermitt2/grobid

Our Approach (RefExt)

- Every line in text is potentially part of a reference string
- Use of layout features and textual features per line for machine learning
- Training of supervised conditional random fields
- This CRF model tags every line with our BIO-annotation

Source code: <u>https://github.com/exciteproject/refext</u>

BIO-annotation

- Target variables to predict are for each line one of:
- B-REF: Beginning of a reference (first line)
- I-REF: Intermediate reference (second+ line)
- O: Other (not part of a reference string)

#	BIO	Text
529		
530	Ο	appear in the footnotes. This could present an
531	Ο	interesting use case of our approach.
532	Ο	References
533	B-REF	Abbate, Janet Ellen, 1999: Inventing the inter-
534	I-REF	net. Cambrige/ MA: MIT Press.
535	B-REF	Barber, Benjamin R., 1998: A Place for US.
536	I-REF	New York: Hill and Wang.

Features

Textual features:

- 1. Line starts with a capitalized letter, ends with a period, a comma, contains a year, a page range, a quotations mark
- 2. counts the occurrences of numbers, words, periods, commas, and words that only consist of one capitalized letter

Layout features:

- 1. current line is indented when compared to the previous line
- 2. gap between the current and previous lines
- 3. line contains less characters than the previous one
- 4. the position of a given line in the whole document

Reference Extraction Evaluation

- 100 Random full-text Paper (https://github.com/exciteproject/ssoar-gold-standard)
 - From SSOAR(<u>http://www.ssoar.info/</u>) corpus
 - Text PDF
 - Contain Reference Section
 - German
- We manually annotated them. They contain 5,355 reference strings.

Evaluation

- Most existing tools focus on English publications
- Adapt these tools to German language publications.
- We retrain CERMINE and GROBID
- We Modified ParsCit (e.g. adding "Literatur" and "Anhang".)
- We exclude other tools that we could adapt them such as PDFX and pdfextract

Evaluation (Cont.)

• Macro-metrics of BIO-annotated reference lines (10-fold cross-validation)

Metric	CER-D	CER-T	Pars-D	Pars-M	GRO-D	GRO-T	RefExt-T
B-REF Precision	0.719	0.734	0.683	0.769	0.692	0.871	0.916
B-REF Recall	0.600	0.557	0.620	0.688	0.789	0.865	0.952
B-REF F1-Score	0.616	0.589	0.616	0.689	0.712	0.861	0.922
I-REF Precision	0.729	0.755	0.577	0.678	0.664	0.857	0.882
I-REF Recall	0.340	0.313	0.809	0.843	0.839	0.871	0.944
I-REF F1-Score	0.432	0.415	0.647	0.716	0.703	0.855	0.902

- CER:CERMINE, GRO:GROBID, and Pars:ParsCit
- D: Default , T: Trained , and M: Modified
- Pars-M (V. 101101), Pars-D (May 31, 2017)
- CERMINE (V. 1.13) and GROBID (V. 0.4.1.)
- RefExt (V. 0.1.0)

Evaluation (Cont.)

 Macro-metrics of reference string extraction using 10-fold cross-validation

Metric	CER-D	CER-T	Pars-D	Pars-M	GRO-D	GRO-T	RefExt-T
Precision	0.296	0.303	0.558	0.617	0.627	0.847	0.879
Recall	0.233	0.220	0.552	0.595	0.718	0.839	0.906
F1-Score	0.245	0.235	0.542	0.590	0.650	0.837	0.885

- GROBID had a recall of zero in 7 publications
- RefExt had a recall of zero for 2 publications
- But recall of 1.0 and 0.662 in GROBID

Future Work about RefExt

- Evaluation on English papers
- It remains to be evaluated how the performance improves when extending the training data
- Improvements might also be possible by adding more domain-specific features

Paper about RefExt

 Körner M., Ghavimi B., Mayr P., Hartmann H., Staab S. (2017) Evaluating Reference String Extraction Using Line-Based Conditional Random Fields: A Case Study with German Language Publications. In: Kirikova M. et al. (eds) New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham DOI: https://doi.org/10.1007/978-3-319-67162-8_15